es la rama de la física que describe los estados de equilibrio a nivel macroscópico. Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental. Los estados de equilibrio se estudian y definen por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema,o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes, tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden tratarse por medio de la termodinámica.
Leyes de la termodinámica
Principio cero de la termodinámica: A esta ley se le llama de "equilibrio térmico". El equilibrio térmico debe entenderse como el estado en el cual los sistemas equilibrados tienen la misma temperatura.
Esta ley dice "Si dos sistemas A y B están a la misma temperatura, y B está a la misma temperatura que un tercer sistema C, entonces A y C están a la misma temperatura". Este concepto fundamental, aun siendo ampliamente aceptado, no fue formulado hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición cero.
Un ejemplo de la aplicación de esta ley lo tenemos en los conocidos termómetros.
Primera Ley de la Termodinámica
Esta primera ley, y la más importante de todas, también conocida como principio de conservación de la energía, dice: "La energía no puede ser creada ni destruida, sólo puede transformarse de un tipo de energía en otro". La primera ley de la termodinámica da una definición precisa del calor, y lo identifica como una forma de energía. Puede convertirse en trabajo mecánico y almacenarse, pero no es una sustancia material.
Experimentalmente se demostró que el calor, que originalmente se medía en unidades llamadas calorías, y el trabajo o energía, medidos en julios, eran completamente equivalentes. Una caloría equivale a 4,186 julios.
Segunda Ley de la Termodinámica
La segunda ley dice que "solamente se puede realizar un trabajo mediante el paso del calor de un cuerpo con mayor temperatura a uno que tiene menor temperatura". Al respecto, siempre se observa que el calor pasa espontáneamente de los cuerpos calientes a los fríos hasta quedar a la misma temperatura.
La segunda ley de la termodinámica da, además, una definición precisa de una propiedad llamada entropía (fracción de energía de un sistema que no es posible convertir en trabajo).
Para entenderla, la entropía puede considerarse como una medida de lo próximo o no que se halla un sistema al equilibrio; también puede considerarse como una medida del desorden (espacial y térmico) del sistema.
Pues bien, esta segunda ley afirma que "la entropía, o sea, el desorden, de un sistema aislado nunca puede decrecer. Por tanto, cuando un sistema aislado alcanza una configuración de máxima entropía, ya no puede experimentar cambios: ha alcanzado el equilibrio"
Como la entropía nunca puede disminuir, la naturaleza parece pues "preferir"’ el desorden y el caos. Puede demostrarse que el segundo principio implica que, si no se realiza trabajo, es imposible transferir calor desde una región de temperatura más baja a una región de temperatura más alta.
Tercera Ley de la Termodinámica
El tercer principio de la termodinámica afirma que "el cero absoluto no puede alcanzarse por ningún procedimiento que conste de un número finito de pasos. Es posible acercarse indefinidamente al cero absoluto, pero nunca se puede llegar a él".
Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico.
Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es una de las más sólidas y universales de las leyes de la naturaleza descubiertas hasta ahora por la ciencia.